Relations between Lagrangian models and synthetic random velocity fields.
نویسندگان
چکیده
The authors propose an alternative interpretation of Markovian transport models based on the well-mixed condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space-time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well-known nonuniqueness problem in the well-mixed approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of nonzero mean helicity and other geometrical properties of the flow is elucidated. The well-mixed condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of nontracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behavior of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.
منابع مشابه
Some relations between Lagrangian models and synthetic random velocity fields
We propose an alternative interpretation of Markovian transport models based on the well-mixed condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In parti...
متن کاملDiffusion and geometric effects in passive advection by random arrays of vortices
The Lagrangian transport of a passive scalar in a class of incompressible, random stationary velocity fields, termed “random-vortex” models, is studied. These fields generally consist of random distributions of finite-sized elementary vortices in space with zero mean velocity in the presence of molecular diffusion D. The effects of vortex density, vortex strength, and sign of the vorticity on t...
متن کاملA Lagrangian subgridscale model for particle transport improvement and application in the Adriatic Sea using the Navy Coastal Ocean Model
An accurate estimation of Lagrangian transport in the ocean is important for a number of practical problems such as dispersion of pollutants, biological species, and sediments. Forecasting of the Lagrangian pathways necessarily relies on the accuracy of ocean and coastal models. However, these models include a number of errors that propagate directly from the Eulerian velocity field to the Lagr...
متن کاملRandom Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملIntermittency in Turbulence: Multiplicative random process in space and time
We present a simple stochastic algorithm for generating multiplicative processes with multiscaling both in space and in time. With this algorithm we are able to reproduce a synthetic signal with the same space and time correlation as the one coming from shell models for turbulence and the one coming from a turbulent velocity field in a quasi-Lagrangian reference frame. Corresponding author: Dr....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2004